Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of dissolved oxygen concentration on dynamic strain aging and stress corrosion cracking of SUS304 stainless steel under high temperature pressurized water

Hirota, Noriaki; Nakano, Hiroko; Fujita, Yoshitaka; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Demura, Masahiko*; Kobayashi, Yoshinao*

The IV International Scientific Forum "Nuclear Science and Technologies"; AIP Conference Proceedings 3020, p.030007_1 - 030007_6, 2024/01

Dynamic strain aging (DSA) and intergranular stress corrosion cracking (intragranular SCC) occur in high temperature pressurized water simulating a boiling water reactor environment due to changes in dissolved oxygen (DO) content, respectively. In order to clearly understand the difference between these phenomena, the mechanism of their occurrence was summarized. As a result, it was found that DSA due to intragranular cracking occurred in SUS304 stainless steel at low DO $$<$$ 1 ppb, while DSA was suppressed at DO 100 to 8500 ppb due to the formation of oxide films on the surface. On the other hand, when DO was increased to 20000 ppb, the film was peeled from the matrix, O element diffused to the grain boundary of the matrix, resulting in intergranular SCC. These results are indicated that the optimum DO concentration must be adjusted to suppress crack initiation due to DSA and intergranular SCC.

Oral presentation

Effect of grain refinement on dynamic strain aging in SUS304L stainless steel under high temperature pressurized water

Hirota, Noriaki; Kondo, Keietsu; Nakano, Hiroko; Fujita, Yoshitaka; Takeuchi, Tomoaki; Ide, Hiroshi; Tsuchiya, Kunihiko; Kobayashi, Yoshinao*

no journal, , 

Dynamic strain aging (DSA) has been identified in shrouds of boiling water reactors and recirculation system piping of pressurized water reactors in the nuclear field. This phenomenon increases the work hardening rate of the material and causes a reduction in ductility. Rodriguez reported that using stainless steel, this work hardening increases with grain refinement, making DSA more likely to occur. The objective of this study is to evaluate the effect of grain refinement on DSA in a high temperature pressurized water (HTPW) simulating nuclear reactor environment utilizing ultrafine grained SUS304L (UFGS). UFGS was heat treated to adjust the grain size from 0.59 $$mu$$m to 68.6 $$mu$$m, and Hall-Petch relationship for 0.2 % yield stress was arranged. The k values obtained in this study were almost the same as the reference values previously obtained for SUS304L. Regarding the effect of grain size on fracture strain, a comparison of fracture strain between tensile test under air and slow strain rate test (SSRT) under 598 K / 15 MPa at dissolved oxygen $$<$$ 1 ppb showed that the fracture strain was lower than that under air as the grain size became coarser. The micrograph after fracture in a HTPW showed that ductile fracture surfaces were observed for materials with grain sizes less than 28.4 $$mu$$m. However, when the grain size coarsened to 68.6 $$mu$$m, more than half of all fracture surfaces were brittle fractured. For the material with a grain size of 0.59 $$mu$$m under HTPW, many correspondence grain boundaries of {111}/$$Sigma$$3 boundaries were observed in the fracture cross-section of the sample. But these distributions were rarely observed when the grain size was coarsened to 68.6 $$mu$$m. Therefore, the suppression of crack propagation by DSA to the fine grains in a HTPW can be attributed to the relaxation of dislocation accumulation by the {111}/$$Sigma$$3 boundaries.

2 (Records 1-2 displayed on this page)
  • 1